Sixth Annual Conference on Carbon Capture & Sequestration

Steps Toward Deployment

CCS Economic Analyses

Outlook for Carbon Capture from Pulverized Coal and Integrated Gasification Combined Cycle Power Plants

Jared Ciferno, NETL Julianne Klara, NETL John Wimer, NETL

Analyses Conducted Across Various Energy Technologies

New construction CO₂ Capture Ready

Retrofit Existing Plants Co-sequestration

Coal Gasification (IGCC)

Selexol

H₂/ CO₂ Membrane

Chemical Looping

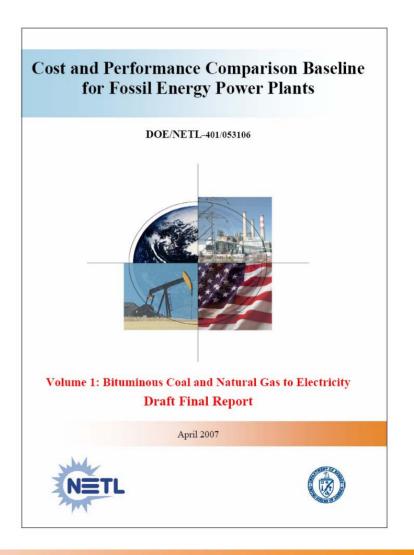
Solid & Liquid Sorbents

Pulverized Coal

Amine Scrubbing Ammonia Scrubbing Solid Sorbents CO₂ Membrane

Oxyfuel Combustion

Cryogenic Air Sep. Unit
O₂ Membranes
Compact Boilers
Advanced Steam Cycles
Chemical Looping



CO₂ Capture from Fossil Energy Power Plants

-Report Contains-

Subcritical Pulverized Coal
Supercritical Pulverized Coal
Integrated Gasification Combined
Cycle

Natural Gas Combined Cycle

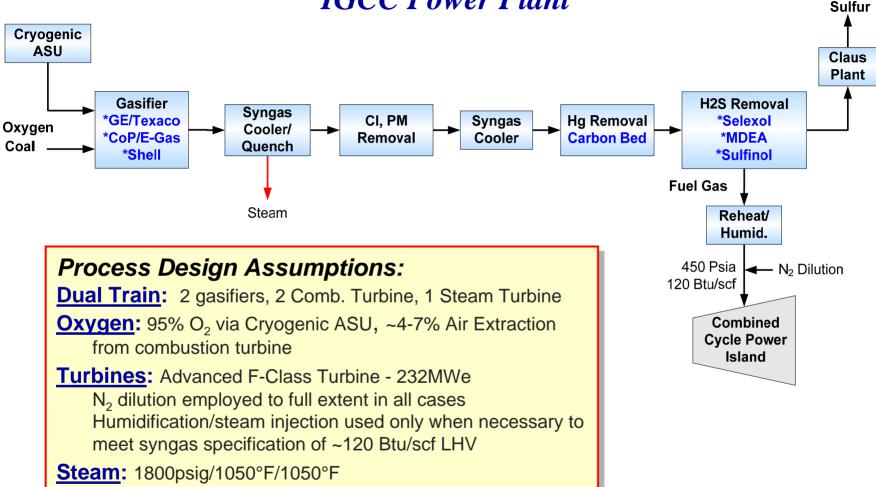
Study Matrix

Plant Type	ST Cond. (psig/°F/°F)	Gasifier/ Boiler	Acid Gas Removal/ CO ₂ Separation / Sulfur Recovery	CO ₂ Cap
	1800/1050/1050 GE		Selexol / - / Claus	
	(non-CO ₂	Energy	Selexol / Selexol / Claus	90%
ICCC	capture cases)	ConocoPhillips	MDEA / - / Claus	
	1800/1000/1000 (CO ₂ capture	(E-Gas)	Selexol / Selexol / Claus	88%¹
		Shell	Sulfinol-M / - / Claus	
	cases)		Selexol / Selexol / Claus	90%
	0400/4050/4050		Wet FGD / - / Gypsum	
PC	2400/1050/1050	Subcritical	Wet FGD / Econamine / Gypsum	90%
PC	3500/1100/1100	Superarities	Wet FGD / - / Gypsum	
	3500/1100/1100	Supercritical	Wet FGD / Econamine / Gypsum	90%

¹ CO₂ capture is limited to 88% by syngas CH₄ content

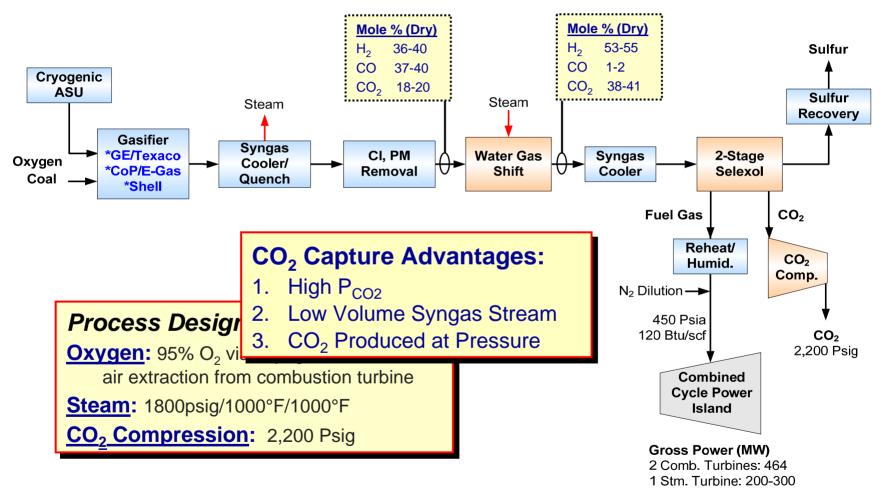
Economic Assumptions

Startup	2012	
Plant Life (Years)	20	
Capital Charge Factor		
High Risk		
(All IGCC, PC/NGCC with CO ₂ capture)	17.5	
Low Risk		
(PC/NGCC without CO ₂ capture)	16.4	
Dollars (Constant)	2007	
Coal (\$/MM Btu)	1.80	
Capacity Factor		
IGCC	80	
PC/NGCC	85	



IGCC Power Plant

Current State with and without CO₂ Capture



Current Technology IGCC Power Plant

Pre-Combustion Current Technology *IGCC Power Plant with CO₂ Scrubbing*

Cost and Performance Comparison Baseline for Fossil Energy Power Plants, U.S. Department of Energy—National Energy Technology Laboratory, Draft Final Report, May 2007

GE Energy IGCC Performance Results

	GE Energy]	
CO ₂ Capture	NO	YES		
Gross Power (MW)	770	745		Steam for WGS, Selexol Unit
Auxiliary Power (MW)				COIOACI CIIII
Base Plant Load	23	23		↑ in ASU air comp.
Air Separation Unit	103	121		load w/o turbine integration
Gas Cleanup/CO ₂ Capture	4	18		mogration
CO ₂ Compression	-	27		Includes H ₂ S/CO ₂
Total Aux. Power (MW)	130	189		Removal in Selexol Solvent
Net Power (MW)	640	556		
Heat Rate (Btu/kWh)	8,922	10,505	1	
Efficiency (HHV)	38.2	32.5		
Energy Penalty ¹	-	5.7		

 $[\]frac{1CO_2}{2}$ Capture Energy Penalty = Percent points decrease in net power plant efficiency due to CO_2 Capture

IGCC Performance Summary

	GE Energy		E-Gas		Shell	
CO ₂ Capture	NO	YES	NO	YES	NO	YES
Gross Power (MW)	770	745	742	694	748	693
Auxiliary Power (MW)						
Base Plant Load	23	23	25	26	21	19
Air Separation Unit	103	121	91	109	90	113
Gas Cleanup/CO ₂ Capture	4	18	3	15	1	16
CO ₂ Compression	-	27	-	26	- 1	28
Total Aux. Power (MW)	130	189	119	176	112	176
Net Power (MW)	640	556	623	518	636	517
Efficiency (%HHV)	38.2	32.5	39.3	31.7	41.1	32.0
Energy Penalty ¹	-	5.7	-	7.6	-	9.1

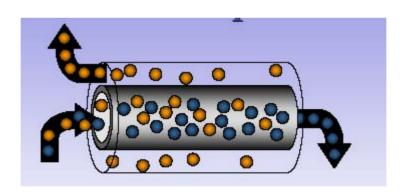
 $[\]frac{^{1}\text{CO}_{2}}{^{2}}$ Capture Energy Penalty = Percent points decrease in net power plant efficiency due to CO_{2} Capture

IGCC Economic Results Summary

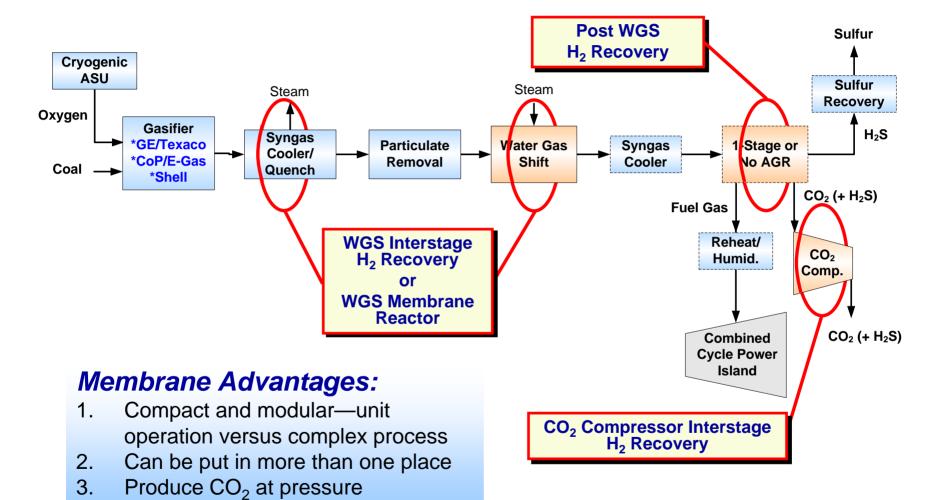
	GE E	GE Energy E-Gas		Shell		
CO ₂ Capture	NO	YES	NO	YES	NO	YES
Plant Cost (\$/kWe)						
Base Plant	1,323	1,566	1,272	1,592	1,522	1,817
Air Separation Unit	287	342	264	329	256	336
Gas Cleanup/CO ₂ Capture	203	414	197	441	199	445
CO ₂ Compression	-	68	1	69	-	70
Total Plant Cost (\$/kWe)	1,813	2,390	1,733	2,431	1,977	2,668
Capital COE (¢/kWh)	4.53	5.97	4.33	6.07	4.94	6.66
Variable COE (¢/kWh)	3.27	3.94	3.19	4.08	3.11	3.97
Total COE (¢/kWh)	7.80	9.9	7.52	10.2	8.05	10.6
Increase in COE (%)	-	27	-	35	-	32

IGCC CO₂ capture results in:

Increase in Capital Cost (TPC) ~ \$577—691/kW Increase in COE ~2.1—2.6 cents/kWh (~ ↑30%)

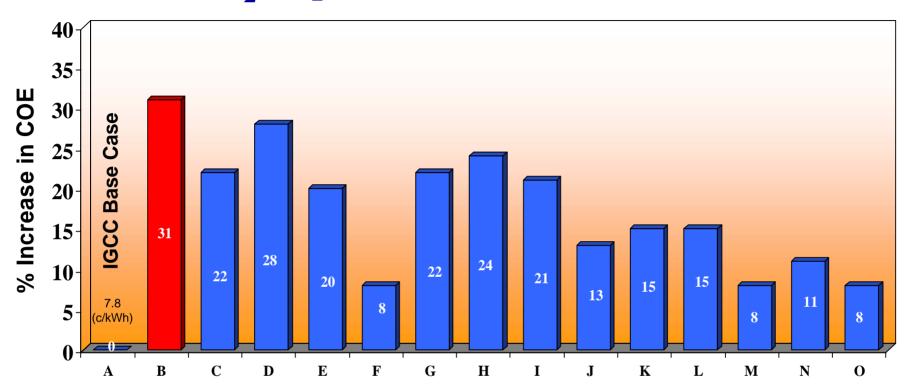

IGCC with CO₂ Capture Key Points

- 1. Gasifier design (dry feed vs. slurry, quench vs. heat exchanger) has large influence on water-gas shift steam requirement, steam turbine output and net plant efficiency
- 2. Average COE without CO_2 capture = 7.8 cents/kWh
- 3. Average COE with CO₂ capture = 10.2 cents/kWh
- 4. Average CO_2 mitigation cost = \$26/ton CO_2 removed (\$33/ton CO_2 avoided)


Technology Options to Decrease IGCC CO₂ Capture Costs

Example Gas Separation Membranes

Possible Integrations of Membranes into IGCC Plant



4.

Opportunities for Co-capture

CO₂ Capture Economics for IGCC

A-IGCC w/o CO2 Capture

D—Selexol w/ Co-Storage of H₂S/CO₂

G—Selexol w/ O2 Membrane

L—Chemical Looping w/ Co-Storage

O-Co-Production w/ SOFC and H2 Membrane

*NG at\$5.54/MM Btu

E—Advanced Sorbent w/ Co-Storage of H₂S/CO₂

H-Selexol w/ WGS Membrane

J-Advanced Sorbent w/ O₂/WGS Membranes K-Advanced Sorbent w/ O2/WGS Membranes, Co-storage

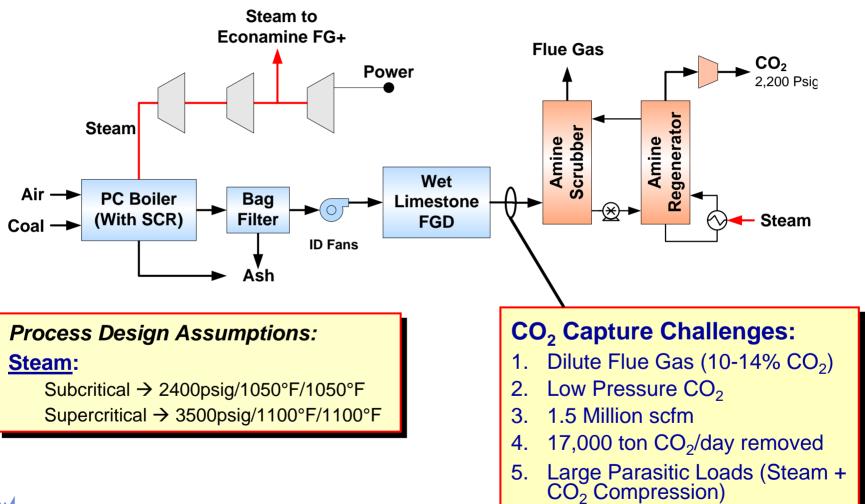
M—Co-Production w/ H₂ Membrane

C—Advanced Sorbent Scrubbing

F*—Adv. Sorb. + Co-Production + Co-Storage

I—Selexol w/ O₂/WGS Membranes

N-Co-Production w/ SOFC



Pulverized Coal Power Plant

Current State CO₂ Capture Using Advanced Amines

Post-Combustion Current Technology *Pulverized Coal Power Plant with CO*₂ *Scrubbing*

Subcritical PC Performance

	Subcritical		
Coal Flow Rate	5,252	7,759	48% Increase in Coal Flow Rate
CO ₂ Captured (Ton/day)	0	16,566	Coal Flow Nate
Gross Power (MW)	584	681	
Auxiliary Power (MW)			
Base Plant Load	19	36	Larger Base Plant
Forced + Induced Draft Fans	10	14	Larger Base Flant
Flue Gas Cleanup	4	5	MEA Comphine
CO ₂ Capture	-	24	MEA Scrubbing
CO ₂ Compression	-	52	~17,000 TPD to
Total Aux. Power (MW)	33	131	2,200 Psig
Net Power (MW)	550	550	
Efficiency (%HHV)	36.8	25.0	
Energy Penalty (% Points)	-	11.8	

CO₂ Capture decreases net efficiency by ~12 percentage points

Pulverized Coal Performance Summary

	Subcritical		Super	critical
Coal Flow Rate	5,252	7,759	4,935	7,039
CO ₂ Captured (Ton/day)	0	16,566	0	15,029
Gross Power (MW)	584	681	580	664
Auxiliary Power (MW)				
Base Plant Load	19	36	21	32
Forced + Induced Draft Fans	10	14	9	13
Flue Gas Cleanup	4	5	3	5
CO ₂ Capture	-	24	-	21
CO ₂ Compression	-	52	-	47
Total Aux. Power (MW)	33	131	30	118
Net Power (MW)	550	550	550	546
Efficiency (%HHV)	36.8	25.0	39.1	27.2
Energy Penalty (% Points)	-	11.8	-	11.9

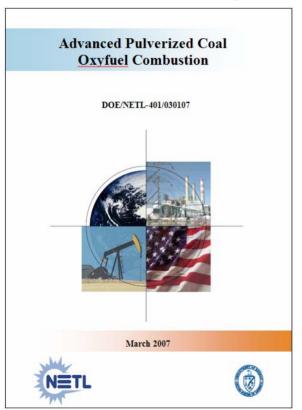
CO₂ Capture decreases net efficiency by ~12 percentage points

Pulverized Coal Economic Results Summary

	Subcritical		Super	critical
CO ₂ Capture	NO	YES	NO	YES
Plant Cost (\$/kWe)				
Base Plant	1,302	1,689	1,345	1,729
SOx and NOx Cleanup	246	323	229	302
CO ₂ Capture	-	792	-	752
CO ₂ Compression	-	89	-	85
Total Plant Cost (\$/kWe)	1,548	2,893	1,574	2,868
Capital COE (¢/kWh)	3.41	6.79	3.47	6.74
Variable COE (¢/kWh)	2.99	4.63	2.86	4.34
Total COE (¢/kWh)	6.40	11.42	6.33	11.08
Increase in COE (%)	-	78	-	75

PC CO₂ capture results in:

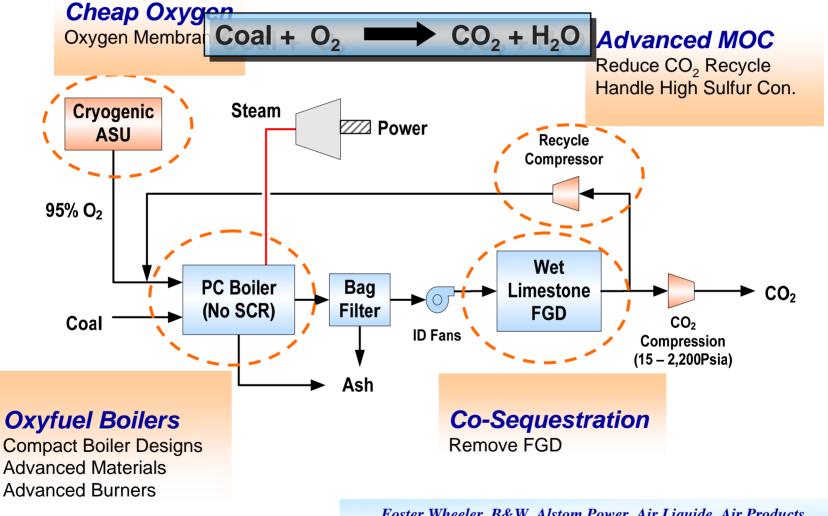
Increase in Capital Cost (TPC) ~ \$1,325/kW Increase in COE ~5 cents/kWh (~ ↑77%)


Pulverized Coal CO₂ Capture Key Points

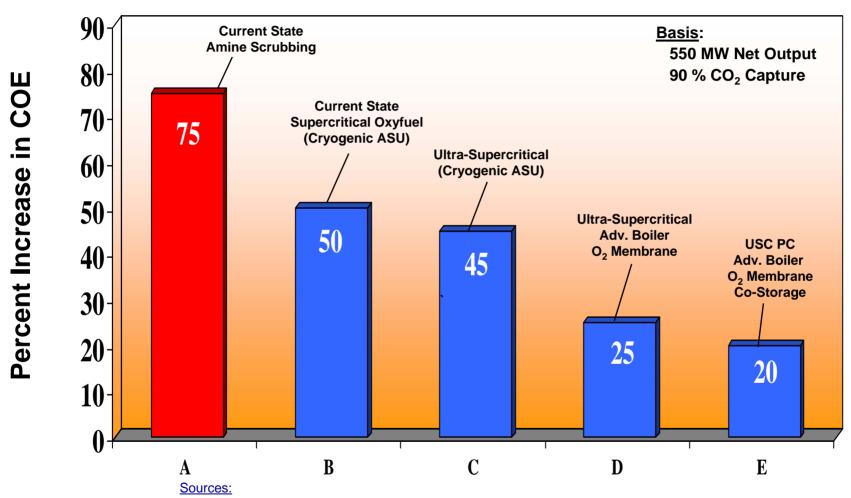
- 1. Advanced amine scrubbing technology for 90% CO₂ capture continues to be very energy intensive and costly
 - Definite need for performance and cost improvements
- 2. Average COE without CO₂ capture ~ 6.4 cents/kWh (versus 7.8 cents/kWh for IGCC)
- 3. Average COE with CO₂ capture ~11 cents/kWh (versus 10 cents/kWh for IGCC)
- 4. Average CO₂ mitigation cost = \$41/ton CO₂ removed (\$63/ton CO₂ avoided)

Technology Options to Decrease Pulverized Coal CO₂ Capture Costs

Example Oxyfuel Combustion



"Advanced Pulverized Coal Oxyfuel Combustion"


-Report ContainsSupercritical PC Oxyfuel
Ultra-supercritical PC Oxyfuel
Cryogenic and membrane
oxygen
Co-Sequestration (CO₂/SOx)

Pulverized Coal Oxyfuel Combustion Technology Opportunities

Driving Down Oxyfuel Combustion Costs

- 2007 Pulverized Coal Oxyfuel Combustion Power Plants, U.S. Department of Energy—National Energy Technology Laboratory, Draft Final Report, April 2007
- 2. Conceptual Design of Oxygen Based Pulverized Coal Boiler, Foster Wheeler North America Corporation, developed for U.S. Department of Energy—National Energy Technology Laboratory, September 2006

Thank You!

Email: <u>Jared.Ciferno@netl.doe.gov</u>

Phone: 412-386-5862

NETL Energy Analysis Link:

www.netl.doe.gov/energy-analyses

Design Basis: Bituminous Coal Type

Illinois #6 Coal Ultimate Analysis (weight %)

	As Rec'd	Dry
Moisture	11.12	0
Carbon	63.75	71.72
Hydrogen	4.50	5.06
Nitrogen	1.25	1.41
Chlorine	0.29	0.33
Sulfur	2.51	2.82
Ash	9.70	10.91
Oxygen (by difference)	6.88	7.75
	100.0	100.0
HHV (Btu/lb)	11,666	13,126

Environmental Targets

	IGCC ¹	PC ²	NGCC ³
SO ₂	0.0128 lb/MMBtu	0.085 lb/MMBtu	< 0.6 gr S /100 scf
NOx	15 ppmv (dry) @ 15% O ₂	0.07 lb/MMBtu	2.5 ppmv @ 15% O ₂
РМ	0.0071 lb/MMBtu	0.017 lb/MMBtu	Negligible
Hg	> 90% capture	1.14 lb/TBtu	Negligible

¹ Based on EPRI's CoalFleet User Design Basis Specification for Coal-Based IGCC Power Plants

² Based on BACT analysis, exceeding new NSPS requirements

³ Based on EPA pipeline natural gas specification and 40 CFR Part 60